TiO 2 -based materials for photocatalytic hydrogen production

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Photocatalytic Hydrogen Production on TiO2 by Using Carbon Materials

The effect of carbon materials on TiO2 for the photocatalytic hydrogen gas production from water / alcohol mixtures was investigated. Single walled carbon nanotubes (SWNTs), multi walled carbon nanotubes (MWNTs), carbon nanofiber (CNF), fullerene (FLN), graphite (GP), and graphite silica (GS) were used as co-catalysts by directly mixing with TiO2. Drastic synergy effects were found with increas...

متن کامل

Photocatalytic Hydrogen Production

The photocatalytic production of hydrogen from aqueous systems is reviewed, stressing the very promising features of the process as an environmentally friendly, perfectly renewable way to produce hydrogen, the ideal fuel for the future. Starting with a brief historical background, the most recent achievements in the field are discussed, both in the development of innovative materials able to ca...

متن کامل

Photocatalytic Hydrogen Production

The photocatalytic methanol reforming reaction has been studied using many different Pd/Pt loaded TiO2 powdered catalysts, focussing on the effect of weight loading and reaction phase on the rate of hydrogen production. The palladium/platinum weight loading dependence in the gas and liquid phase showed that independent of the phase of reaction, the amount of hydrogen produced from methanol refo...

متن کامل

Polyoxoniobate-based 3D framework materials with photocatalytic hydrogen evolution activity.

Two phosphoniobate-based 3D frameworks were firstly constructed using the hexa-capped Keggin polyoxoniobates [PNb12O40(VO)6](3-) and copper cations. Photocatalytic studies indicated that the hybrid materials exhibit photocatalytic hydrogen evolution activity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Energy Chemistry

سال: 2017

ISSN: 2095-4956

DOI: 10.1016/j.jechem.2017.02.005